the local TiO₆ octahedron predicted from both the π -bonding arguments and the comparative overlap populations conflicts with observation, these computational results affirm the importance of O-O interactions in controlling the bond distances in TiO₂. Other local geometrical features, for example, the planarity of each OTi₃ unit, are also controlled by the π -interactions between Ti and O.

Our conclusions from this study are severalfold. There is not dramatic structural change concerning the metal coordination polyhedra as the temperature is lowered. The overall result is a small shrinkage in the metric of the lattice for both anatase and rutile. No large changes in bond lengths and angles are observed in contrast to those we have described for the open framework of cristobalite.¹⁴ There is a small effect in anatase associated with the oxygen atom movement. Indeed in these close-packed structures these are the sorts of changes that should be expected. Only in more open structures should changes in the hinging of coordination polyhedra be found as the temperature is changed. However, the sense of the coordination geometry about the metal is the same at both temperatures and shows that the structure is clearly controlled by a balance of attractive Ti–O and repulsive O–O forces.

Acknowledgment. This research was supported by a generous grant to J.K.B. from the Dow Chemical Co. and by the National Science Foundation through Grant NSF DMR8276892 to the Materials Research Laboratory at The University of Chicago. J.W.R. acknowledges support of the Intense Pulsed Neutron Source By DoE, Contract W-31-109-ENG-38. This study is relevant to the attempt to understand the bonding of openframework structures supported by Grant NSF CHE 84-05167. We also acknowledge J. D. Jorgensen of Argonne National Laboratory and J. J. Pluth and I. D. Steele for their experimental assistance.

Appendix

The tight-binding calculations were performed within the framework of the extended Hückel approach.26 All Ti-O distances were set at 1.95 Å in both polymorphs. The geometry at oxygen was fixed by angles of 90°, 90°, and 135° in rutile and 155.8°, 102.1°, and 102.1° in anatase for the plots of Figure 4. The density of states curves were calculated by averaging over 40 special points in the irreducible wedge of the first Brillouin zone for the simple tetragonal lattice. Parameters for Ti and O were those used in the earlier study.¹¹ The plots of Figure 4a,b were obtained by variation of the u parameter of anatase while the Ti-O distance was kept fixed in an analogous way to the approach used in ref 11. The molecular mechanics calculations on anatase and rutile employed a finite cluster model consisting of nine unit cells of the crystal arranged in a tetragonal prism. The interaction energy of the four and eight oxide ions, respectively, in rutile and anatase, located in the central cell with the ions of all nine cells, was evaluated by using a simple Lennard-Jones potential with a minimum at 2.99 Å. With this requirement the shape of the curve is completely determined, but the energy units are arbitrary. We do not feel that trying to weight the energetic importance of the "electronic" and "hard sphere" effects is a useful exercise using our methods. The interaction energy was of sufficiently short range that this size prism was very adequate for this purpose. A two-dimensional energy surface in the coordinates u (which fixes the oxygen atoms positions in both structures) and the distortion coordinate q around the metal ion was constructed. If r_a , r_t , and r_f are respectively the average metal-oxygen distance and the distances of the symmetry-equivalent pair and quartet of distances in the real structure, then the distortion coordinate was that which kept the average metal-oxygen distance constant, i.e., $r_t = r_a + r_a$ q and $r_f = r_a - (q/2)$.

Registry No, TiO₂, 13463-67-7.

Calcium-Selective Ligands. 2.¹ Structural and Spectroscopic Studies on Calcium and Cadmium Complexes of EGTA⁴⁻

Cynthia K. Schauer and Oren P. Anderson*

Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523. Received August 1, 1986

Abstract: The structures of salts of the calcium and cadmium complexes of the octadentate ligand EGTA⁴⁻, Ca[Ca-(EGTA)]·(²²/₃)H₂O (1) and Sr[Cd(EGTA)]·7H₂O (2), have been investigated by single-crystal X-ray diffraction. 1 crystallizes in the monoclinic space group $P_{2_1/c}$ (Z = 12), with a = 24.358 (4) Å, b = 16.798 (4) Å, c = 19.015 (4) Å, and $\beta = 94.05$ (2)°. 2 crystallizes in the monoclinic space group $P_{2_1/n}$ (Z = 4), with a = 16.814 (4) Å, b = 8.454 (2) Å, c = 17.614 (5) Å, and $\beta = 97.34$ (2)°. Both Ca²⁺ and Cd²⁺ utilize the octadentate chelating capability of EGTA⁴⁻ to form anions exhibiting distorted dodecahedral coordination spheres. In [Ca(EGTA)]²⁻ anions, the nitrogen atoms bind to Ca²⁺ at longer distances (Ca-N(av) = 2.60 (2) Å) than do the ether oxygen atoms (Ca-O(ether, av) = 2.50 (3) Å) or the carboxylate oxygen atoms (Ca-O(carb, av) = 2.38 (2) Å). In [Cd(EGTA)]²⁻, however, the nitrogen atoms bind to Cd²⁺ at shorter distances (Cd-N (av) = 2.43 (1) Å) than do the ether oxygen atoms (Cd-O(ether, av) = 2.580 (8) Å). The carboxylate oxygen atoms still bind at the shortest distances (Cd-O(carb, av) = 2.35 (5) Å). ¹H NMR spectra of the [Ca(EGTA)]²⁻ and [Cd(EGTA)]²⁻ anions show that in each case all carboxylate groups are made equivalent by intramolecular exchange at room temperature. The effect of dissociation of nitrogen ligand atoms, with subsequent inversion at nitrogen, is evident in ¹H NMR spectra for [Ca(EGTA)]²⁻ at elevated temperatures. The ¹¹³Cd chemical shift for [Cd(EGTA)]²⁻ in solution (+15 ppm) reflects a more shielded environment for the ¹¹³Cd nucleus than does the chemical shift (+36 ppm) for solid **2**. The ¹¹³Cd powder pattern of **2** yields the three components of the shielding tensor ($\sigma_{11} = +159$, $\sigma_{22} = +29$, $\sigma_{33} = -81$ ppm); the most highly shielded component occurs in the range typical of cadmium-substituted calcium-binding proteins.

Structural aspects of the chelation of metal ions by highly polydentate ligands (i.e., ligands containing six or more binding sites) have recently become of interest in this laboratory. Many ligands in this category exhibit interesting patterns of metalbinding selectivity, yet, with the exception of $EDTA^{4-}$ (H₄EDTA = 3,6-bis(carboxymethyl)-3,6-diazaoctanedioic acid), little systematic structural knowledge exists regarding the manner in which such ligands bind to metals.

One important example of such selectivity is associated with the alkaline earth metal ions, $Mg^{2+}-Ba^{2+}$. In the body, mobile calcium (i.e., nonmineral calcium) is bound at a variety of sites

⁽¹⁾ Part 1: Schauer, C. K.; Anderson, O. P. Acta Crystallogr., Sec. C: Cryst. Struct. Commun. 1986, C42, 760.

and participates in a number of important processes (muscle contraction, blood clotting, neurotransmitter release, hormonal response, etc.). A typical cell maintains a high gradient of Ca²⁺ concentration across the membrane ($\approx 0.1 \ \mu M$ inside, vs. $\approx 2 \ mM$ outside) as well as a high internal preponderance of Mg^{2+} (≈ 0.1 mM).

Such factors allow the use of calcium ion as a second messenger within the cell. In this process, a stimulus at the cell's outer surface is thought to cause binding sites on the interior of the cell membrane to release Ca^{2+} , increasing the concentration of Ca^{2+} in the cytosol by a factor of 10-20. Intracellular proteins containing binding sites with an affinity for Ca^{2+} of appropriate magnitude $(K_{\rm d} \approx 10^{-7} \text{ M})$ and a high degree of selectivity for binding Ca²⁺ over Mg^{2+} (>10⁴ difference in stability constants) bind the Ca²⁺ thus released. The resulting change in protein conformation allows the metalloprotein to participate in processes such as those mentioned above.

Troponin C and calmodulin are examples of such calciumbinding proteins, with central roles in the regulation of important biological processes.²⁻¹² Troponin C plays a fundamental role in muscle contraction,¹³ while calmodulin regulates ATPase activity, ¹⁴ exocytosis, ^{15,16} and other cellular functions.^{4–7} Structural studies on troponin $C^{17,18}$ and calmodulin¹⁹ have not yet reached the resolution needed to be confident of details such as the coordination number and geometric arrangement about the calcium ions in the helix-loop-helix calcium-binding domains. A related protein, carp muscle parvalbumin, contains two calcium-binding domains,²⁰ commonly referred to as EF hands.¹⁰ In one of these two sites, a calcium ion is bound by six ligand atoms, including oxygen atoms from unidentate carboxylate groups of aspartic (Asp) and glutamic (Glu) acid residues, a serine hydroxyl group, and an amido oxygen atom of a phenylalanine residue. In the second site, a calcium ion is bound by eight ligand atoms, including both unidentate and bidentate carboxylate groups from Asp and Glu residues, an amido oxygen atom of a lysine residue, and the oxygen atom of a single water molecule. The proposal that similar domains perform the highly selective calcium complexation characteristic of other calcium-binding proteins¹⁰ has received apparent confirmation from the X-ray diffraction studies of troponin C^{17,18} and calmodulin.¹⁹

- (2) Calcium in Biology; Spiro, T. G., Ed.; J. Wiley and Sons: New York, 1983
- (3) Calcium and Its Role in Biology; Sigel, H., Ed.; Marcel Dekker: New York, 1984.
 - (4) Cheung, W. Y. Science (Washington, DC) 1980, 207, 19.
- (5) Calcium and Cell Function; Cheung, W. Y., Ed.; Academic Press: New York, 1980; Vol. 1.
- (6) Calcium and Cell Function; Cheung, W. Y., Ed.; Academic Press: New York, 1982; Vol. 2.
- (7) Campbell, A. K. Intracellular Calcium; John Wiley & Sons: New York, 1983.
- (8) Calcium Binding Proteins, 1983; DeBernard, B., Sottocasa, G. L., Sandri, G., Carafoli, E., Taylor, A. N., Vanaman, T. C., Williams, R. J. P., Eds.: Elsevier: New York, 1983.
- (9) Calcium Binding Proteins: Structure and Function; Siegel, F. L.,
- Carafoli, E., Kretsinger, R. H., Mackennan, D. H., Wasserman, R. H., Eds.; Elsevier: North Holland, New York, 1980.
 - (10) Kretsinger, R. H. CRC Crit. Rev. Biochem. 1980, 119.
- (11) Calmodulin and Cell Function; Watterson, D. M., Vincenzi, F. F., Eds.; New York Academy of Science: 1980.
- (12) Means, A. R.; Tash, J. R.; Chafouleas, J. G. Physiol. Rev. 1982, 62, 1.
 - (13) Ashley, C. C. in ref 2, Chapter 3, p 107.
 - (14) Cormier, M. J. in ref 2, Chapter 2, p 55.
 - (15) Rubin, R. P. in ref 2, Chapter 4, p 175.
 - (16) Creutz, C. E. in ref 3, Chapter 8, p 319.
- (17) Sundaralingam, M.; Bergstrom, R.; Strasburg, G.; Rao, S. T.; Roy-chowdhury, P.; Greaser, M.; Wang, B. C. Science (Washington, DC) 1985, 227, 945. (18) Herzberg, O.; James, M. N. G. Nature (London) 1985, 313, 653.

J. Am. Chem. Soc., Vol. 109, No. 12, 1987 3647

Table I, Stability Constants

ligand	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Cd ²⁺	ref
calmodulin EDTA ⁴⁻ EGTA ⁴⁻ BAPTA ⁴⁻	3.0 8.8 5.2 1.8	6.0-7.2 10.7 11.0 7.0	8.7 8.5	7.9 8.4	16.4 16.7	29, 30 31 31 32

Information regarding the structures of the calcium-binding sites in the native calcium-binding proteins is difficult to obtain by using techniques other than X-ray crystallography, due to the calcium ion's lack of useful spectroscopic properties. Although ⁴³Ca NMR signals have been observed for calcium-binding proteins,^{21,22} expensive isotopic enrichment is required, and the signals obtained are broad. Consequently, other metals have been substituted for Ca^{2+} as spectroscopic probes of binding site structure. The Cd²⁺ ion^{23,24} (as a ¹¹³Cd NMR probe) and various tripositive lanthanide ions (as ¹H NMR shift reagents as well as EPR and luminescence probes)²⁵⁻²⁸ have been used in this manner. Such metal ions, of course, may bind to the calcium-binding site in a significantly different manner than does Ca²⁺. To date, structural studies have not explored the differences in coordination that occur when such metals are substituted for calcium in a highly selective calcium-binding site.

The structural features of the calcium-binding site that are associated with the high calcium-binding selectivity of the proteins remain unknown. Several factors may contribute to the ability of the proteins to bind Ca²⁺ selectively, among which are the following: (1) differences in size and preferred coordination number among the alkaline earth metals, (2) different ligand atom preferences among the metals, and (3) steric constraints of the binding site. The degree to which such factors contribute to calcium-binding selectivity may be explored in complexes of calcium-selective ligands such as EGTA⁴⁻ (H₄EGTA = 3,12bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecanedioic acid).

$$\begin{array}{c} \neg O_2 \subset C H_2 \\ \neg O_2 \subset C H_2 \end{array} \\ \searrow N - C H_2 C H_2 - O - C H_2 C H_2 - O - C H_2 C H_2 - N \\ \hline C H_2 C O_2 - C H_2 C H_2 - N \\ \hline C H_2 C O_2 - C H_2 C H_2 - N \\ \hline C H_2 C O_2 - C H_2 C H_2 - N \\ \hline C H_2 C O_2 - C H_2 C H_2 - N \\ \hline C H_2 C O_2 - C H_2 C H_2 - N \\ \hline C H_2 C O_2 - C H_2 C H_2 - N \\ \hline C H_2 - N \\ \hline$$

EGTA4-

The EGTA⁴⁻ ligand is highly selective toward Ca²⁺ among the alkaline earth metal ions. In fact, its preference for the binding of Ca²⁺ over Mg²⁺ ($\sim 10^6$) is even larger than that typically exhibited by calcium-binding proteins (see Table I). Calciumbinding proteins also complex Sr²⁺ and Ba²⁺ ions more weakly than Ca^{2+} ,³³ the EGTA⁴⁻ ligand's selectivity at this end of the alkaline earth series is reflected in the fact that the stability constant for $[Ca(EGTA)]^{2-}$ is ~10³ larger than the stability constants for the strontium and barium complexes. As a result of this high degree of selectivity, EGTA⁴⁻ can deplete the concentration of Ca^{2+} without influencing the concentration of Mg^{2+} ; this property has been useful in biological studies of calcium function.³⁴ Earlier studies³⁵ employed EDTA⁴⁻ for the same purpose, despite its much lower degree of selectivity for calcium

- (21) Vogel, H. J.; Drakenberg, T.; Forsen, S. In NMR of Newly Accessible Nuclei; Lazlo, P., Ed.; Academic Press: New York, 1983; Vol. I, Chapter 7, p 157.
- (22) Andersson, T.; Drakenberg, T.; Forsen, S.; Thulin, E.; Sward, M. J. Am. Chem. Soc. 1982, 104, 576.
- (23) Armitage, I. M.; Boulanger, Y. NMR of Newly Accessible Nuclei: Lazlo, P., Ed.; Academic Press: New York, 1983; Vol. II, Chapter 13, p 337.
 - (24) Ellis, P. D. Science (Washington, DC) 1983. 221, 1141.
 - (25) Martin, R. B. in ref 2, Chapter 6, p 235
 - (26) Nieboer, E. Struct. Bonding (Berlin) 1975, 22, 1
- (26) Nieboer, E. Struct. Bonaing (Berlin) 1975, 22, 1.
 (27) Horrocks, W.; Albin, M. Prog. Inorg. Chem. 1984, 31, 1.
 (28) Richardson, F. S. Chem. Rev. 1982, 82, 541.
 (29) Klee, C. B.; Vanaman, T. C. Adv. Protein Chem. 1982, 35, 213.
 (30) Haiech, J.; Klee, C. B.; Demaille, J. G. Biochemistry 1981, 20, 3890.
 (31) Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum Press: New York, 1974; Vol. I.
 (32) Toian, B. V. Biochemistry 1980, 10, 2306.
 - (32) Tsien, R. Y. Biochemistry 1980, 19, 2396.
 - (33) Seamon, K. B.; Kretsinger, R. H. in ref 2, Chapter 1, p 20.
 - (34) Reference 7, Chapter 2

(19) Babu, Y. S.; Sack, J. S.; Greenhough, T. J.; Bugg, C. E.; Means, A. R.; Cook, W. J. Nature (London) 1985, 315, 37.

(20) Moews, P. C.; Kretsinger, R. H. J. Mol. Biol. 1975, 91, 201.

(35) Portzehl, H.; Caldwell, P. C.; Ruegg, J. C. Biochim. Biophys. Acta 1964, 79, 581.

(see Table I). Recently, BAPTA⁴⁻, an EGTA-like ligand (in which 1,2-disubstituted benzene rings link the amino nitrogen atoms to the ether oxygen atoms) with a similar degree of calcium-binding selectivity has been used as a calcium ion buffer, due to its lower dependence of stability on pH and more rapid complexation of Ca²⁺.³²

The high calcium-binding selectivity exhibited by EGTA⁴⁻ makes the $[M(EGTA)]^{2-}$ system ($M^{2+} = Mg^{2+}-Ba^{2+}$) of interest as a model for the binding sites in the calcium-binding proteins. In fact, similarities exist between the coordination environments common in calcium-binding proteins and that provided by the EGTA⁴⁻ ligand. In parvalbumin, troponin C, and calmodulin, the high affinity binding sites contain only oxygen donors and bear an overall charge of -4, due to the presence of four carboxylate groups. Six of the eight ligand atoms of EGTA⁴⁻ are neutral or anionic oxygen donors, and the overall charge of the EGTA⁴ ligand is identical with the charges on the protein binding sites.

The structural features that are associated with the ability of EGTA⁴⁻ to bind calcium in a highly selective fashion are not known. In this work, the results of single-crystal X-ray diffraction studies on Ca[Ca(EGTA)] $\cdot (2^2/3)$ H₂O (hereafter 1) and Sr[Cd-(EGTA)]·7H₂O (hereafter 2) are reported. The structure of the calcium complex has been determined in order to establish the coordination geometry about Ca²⁺ in the highly calcium-selective environment provided by the EGTA⁴⁻ ligand. The structure of the cadmium complex has been determined in order to establish the nature and magnitude of the structural changes that take place when Cd^{2+} is substituted for Ca^{2+} in such an environment. In addition, the relationship between the structures of $[Ca(EGTA)]^{2-}$ and [Cd(EGTA)]²⁻ in solution and the structures of these complex anions in the solid state has been explored by variable temperature ¹H NMR studies and by ¹¹³Cd NMR studies (solution and solid state). It is hoped that a more complete picture of the structural basis for the calcium selectivity exhibited by ligands such as EGTA⁴⁻ will assist in understanding similar properties of calcium-binding proteins.

Experimental Section

All reagents were used as purchased (Ca(OH)₂ (Fisher), CdCO₃ (Fisher), H₄EGTA (J. T. Baker), Sr(OH)₂·8H₂O (Alfa)).

Synthesis of Ca[Ca(EGTA)] (22/3)H2O, 1. Ca(OH)2 (0.148 g, 2.00 mmol) was added to an aqueous slurry (20 mL) of H₄EGTA (0.385 g, 1.01 mmol). The solids dissolved on warming and stirring. The pH of the resultant solution was adjusted to 9, by using a small amount of Ca(OH)₂. Addition of 30 mL of acetone, followed by slow cooling of the solution to refrigerator temperature, resulted in the growth of single crystals suitable for the X-ray diffraction study. The clear, colorless plates were characterized by the structure determination as well as by NMR spectroscopy: ¹H NMR (D₂O, 200 MHz, pH 9, DDS standard, δ , ppm) (2.82, t, 4, ³J_{HH} = 4.7 Hz), (3.25, AB_q, 8, J_{AB} = 14 Hz), (3.62, t, 4, ³J_{HH} = 4.7 Hz), (3.77, s, 4); ¹³C NMR (D₂O, 68 MHz, pH 9, DDS standard, δ , ppm) (58.89, t, ${}^{I}J_{CH} = 137$ Hz), (63.25, t, ${}^{I}J_{CH} = 136$ Hz), (69.52, t, ${}^{I}J_{CH} = 144$ Hz), (70.51, t, ${}^{I}J_{CH} = 146$ Hz), (181.91, s).

Synthesis of Sr[Cd(EGTA)]·7H₂O, 2. Sr(OH)₂·8H₂O (0.265 g, 1.00 mmol) and CdCO₃ (0.172 g, 1.00 mmol) were added to a stirred aqueous slurry (6 mL) of H_4EGTA (0.380 g, 1.00 mmol), yielding a neutral solution upon warming. Addition of 14 mL of acetone, followed by slow cooling of the solution to room temperature, resulted in isolation of single crystals (clear, colorless, nearly equidimensional parallelepipeds) suitable for the X-ray diffraction study. The compound was characterized by the structure determination as well as by ¹H NMR spectroscopy. The ¹H NMR spectrum of [Cd(EGTA)]²⁻ has been previously reported;³⁶ the ¹H

NMR spectrum of 2 agreed with the spectrum in that report. NMR Experiments. ¹H NMR spectra were obtained at various temperatures from solutions of Na₂[Ca(EGTA)] (pH 9, 0.1 M) and Na₂-[Cd(EGTA)] (pH 9, 0.1 M) on a Bruker WP-200 spectrometer equipped with a variable temperature probe. The pH values of the solutions were chosen to ensure that the concentration of HML⁻ was negligible in each case

The natural abundance ¹¹³Cd NMR spectrum from a solution of Na₂[Cd(EGTA)] (pH 9, 0.1 M) was recorded at 44.4 MHz on the same spectrometer, utilizing a 10-mm tube, a tunable broad-band probe, and 0.10 M $Cd(ClO_4)_2$ as reference. ¹¹³Cd NMR spectra (spinning and nonspinning) from an unenriched sample of solid 2 were obtained on a

(36) Reed, G. H.; Kula, R. J. Inorg. Chem. 1971, 10, 2050.

Table II. Crystallographic Experiments and Computations

compd	1	2
formula	$C_{14}H_{20}Ca_2N_2O_{10}$	$C_{14}H_{20}CdN_2O_{10}Sr$
	$(^{22}/_{3})H_{2}O$	7H ₂ O
formula wt, amu	588.54	702.44
temp, °C	20 (1)	20 (1)
cryst system	monoclinic	monoclinic
space group	$P2_1/c$	$P2_1/n$
a, Å	24.358 (4)	16.814 (4)
b, Å	16.798 (4)	8.454 (2)
c, Å	19.015 (4)	17.614 (5)
β , deg	94.05 (2)	97.34 (2)
V, Å ³	7761	2483
Ζ	12	4
F(000)	3736	1416
$D_{\rm calcd}$, g cm ⁻³	1.51	1.88
cryst dim, mm	$0.15 \times 0.4 \times 0.4$	0.38 (001 → 00Ī) ×
		0.40 (100 → Ī00) ×
		0.44 (010 → 0Ī0)
radiatn	Mo K α (λ =	Μο Κα
	0.7107 Å)	
monochromator	graphite	graphite
μ , cm ⁻¹	4.90	31.70
scan type	$\theta/2\theta$	$\theta/2\theta$
2θ range, deg	3.5-50.0	3.5-50.0
indices colletd	$+h,+k,\pm l$	$\pm h, \pm k, -l$
reflecns	14674 measd	4882 measd
	13702 unique	4394 unique
	9136 used (I >	3713 used $(I >$
	$2.5\sigma(I))$	$2.5\sigma(I))$
scan spd, deg min ⁻¹	1.98-29.30	1.98-29.30
no. least sq params	973	316
data/params	9.4	11.8
R^a	0.068	0.032
R_w^a	0.073	0.036
GOF ^a	1.89	1.21
g	1.2×10^{-3}	1.0×10^{-3}
slope, norm prob plot ^b	1.47	1.00

 $\frac{{}^{a}R = (\sum |(F_{o} - F_{o})|)/(\sum F_{o}); R_{w} = \{(\sum w|F_{o} - F_{c}|^{2})/(\sum w(F_{o})^{2})\}^{1/2}; \text{ GOF}$ = $\{(\sum w([(F_{o} - F_{o})])^{2})/(N_{data} - N_{params})\}^{1/2}$. ^bAbrahams, S. C. Acta Crystallograllogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1974, B30, 261 - 268

Nicolet NT-200 spectrometer at 44.4 MHz, with Cd(ClO₄)₂·6H₂O as reference. Standard cross-polarization conditions (2 ms contact time) were utilized (¹H decoupling field 42 kHz, 1-s delay between scans). A rotor speed of 1.8 kHz was utilized in acquisition of the magic-angle spinning spectrum.

Structure Determination for Ca[Ca(EGTA)] (²²/₃)H₂O, 1. Crystal data for 1, together with details of the X-ray diffraction experiment and subsequent computations, are given in Table II. The unit cell dimensions were obtained from a least-squares fit to the setting angles for 25 reflections ($2\theta(ave) = 20.2^\circ$) on a Nicolet R3m diffractometer.³⁷ Calculation of a reasonable density required 12 formula units per unit cell. Due to the rarity of such a result in $P2_1/c$, an attempt was made to find an alternative cell by using TRACER;³⁸ none was discovered. The stability of the crystal was monitored by measurement of the intensities of three reflections (200, $0\overline{8}0$, $00\overline{5}$) every 100 data points. The intensities of these three reflections declined by an average of 11% during data collection; a correction for this decay was applied (in addition to Lorentz and polarization corrections) during data reduction. No correction was made for absorption, due to the small average value of μt .

The initial E-map (using phases supplied by the direct methods routine $SOLV^{37}$) revealed the positions of six Ca^{2+} ions. Neutral atom scattering factors³⁹ and anomalous scattering contributions⁴⁰ were used for all atoms. Subsequent Fourier difference electron density maps revealed all non-hydrogen ligand atoms, oxygen atoms of water molecules coordinated

⁽³⁷⁾ Software used for diffractometer operations and data collection was provided with the Nicolet R3m diffractometer. Crystallographic computations were carried out with the SHELXTL program library, written by G. M. Sheldrick and supplied by Nicolet XRD for the Data General Eclipse S/140 (38) The general cell reduction program TRACER, originally written by S.

L. Lawton, was obtained from J. A. Ibers, Northwestern University.

 ⁽³⁹⁾ International Tables for X-ray Crystallography; Kynoch Press:
 Birmingham, England, 1974; Vol. IV, p 99.
 (40) International Tables for X-ray Crystallography; Kynoch Press:
 Birmingham, England, 1974; Vol. IV, p 149.

Table III. Atomic Coordinates (×10⁴) and Isotropic Thermal Parameters ($Å^2 \times 10^3$)^{*a*} for Ca[Ca(EGTA)]·(²/₃)H₂O

atom	x	y	Z	U_{iso}^{b}	atom	<i>x</i>	<i>y</i>	Z	Uiso
Cal	1538 (1)	11479 (1)	4187 (1)	26 (1)	N6	4309 (2)	12556 (3)	3108 (3)	36 (2)
Ca2	1610(1)	8445 (1)	1149(1)	24(1)	01	2401(2)	10858(3)	4062(2)	$\frac{36}{46}(2)$
Ca3	4707 (1)	11366 (1)	2465 (1)	35(1)	02	3105(2)	10570 (3)	3434 (3)	53(2)
Ča4	-24(1)	12459 (1)	162 (1)	26(1)	O3	987 (2)	12314 (2)	3405 (2)	35(1)
Ca5	465 (1)	9934 (1)	2529 (1)	30 (1)	O4	825 (2)	13014 (3)	2422 (2)	47 (2)
Ca6	3788 (1)	9675 (1)	3169 (1)	33 (1)	O5	1913 (2)	12828 (2)	4505 (2)	38 (1)
C1	2399 (3)	11382 (4)	2906 (3)	40 (2)	O 6	1952 (2)	11565 (2)	5410 (2)	39 (1)
C2	2656 (2)	10908 (4)	3514 (3)	37 (2)	O 7	1136 (2)	10379 (2)	3524 (2)	34 (1)
C3	1681 (3)	12360 (4)	2587 (3)	37 (2)	O 8	989 (2)	9090 (2)	3414 (2)	41 (1)
C4	1126 (2)	12592 (3)	2822 (3)	31 (2)	O9	733 (2)	11617 (2)	4803 (2)	32 (1)
C5	2419 (3)	12678 (4)	3460 (4)	43 (2)	O 10	175 (2)	11177 (2)	5580 (2)	35 (1)
C6	2122 (3)	13242 (4)	3909 (4)	42 (2)	O 11	2474 (2)	9029 (3)	1435 (2)	38 (1)
C7	2302 (3)	12822 (4)	5114 (3)	46 (2)	O12	3087 (2)	9503 (3)	2244 (2)	41 (1)
C8	2053 (3)	12353 (4)	5675 (3)	45 (2)	O13	1062 (2)	7584 (2)	1797 (2)	34 (1)
C9	1764 (3)	11038 (4)	5927 (3)	43 (2)	O14	909 (2)	6809 (3)	2710 (2)	46 (2)
C10	1737 (3)	10224 (4)	5578 (3)	41 (2)	015	2006 (2)	7076 (2)	901 (2)	38 (1)
CII	1458 (3)	9538 (3)	4488 (3)	35 (2)	016	2066 (2)	8341 (2)	28 (2)	37 (1)
C12	1172 (2)	9677 (3)	3758 (3)	29 (2)	017	1211 (2)	9533 (2)	1742 (2)	35 (1)
C13	782 (3)	10243 (3)	5115 (3)	33 (2)	O18	1001 (2)	10810 (2)	1789 (2)	42 (1)
C14	555 (2)	11076 (3)	5186 (3)	26 (2)	019	814 (2)	8394 (2)	355 (2)	32 (1)
C15	2452 (3)	8530 (4)	2606 (3)	37 (2)	020	257 (2)	8903 (3)	-486 (2)	39 (1)
C16	2697 (2)	9047 (4)	2055 (3)	33 (2)	021	5156 (2)	12312 (3)	1772 (2)	52 (2)
C17	1744 (2)	7524 (4)	2757 (3)	34 (2)	022	5406 (3)	12/18 (3)	729 (3)	97 (3)
C18	1207 (3)	7278 (3)	2390 (3)	31 (2)	023	4321 (2)	10067 (3)	2208 (2)	41 (1)
C19	2504 (3)	7243 (4)	2040 (3)	39 (2)	024	4154 (2)	9061 (3)	1466 (3)	49 (2)
C20	2219(3)	6673 (4)	1527 (3)	41 (2)	025	5576 (2)	10663 (4)	2638 (3)	79 (2) 54 (2)
C21	2373(3)	7065 (4)	354 (4)	45 (2)	026	5369 (2) 3850 (2)	11948 (3)	3375 (3)	54 (2) 52 (2)
C22	2137(3)	7361 (4)	-243(3)	42(2)	027	3839 (2)	11824 (3)	1930 (3)	$\frac{32}{77}$ (2)
C23	1919 (3)	0725 (4)	-494(3)	41(2)	028	3330 (3) 4201 (2)	12000(3)	1023(3) 2408(2)	$\frac{77}{2}$
C24	1575(3)	$\frac{9723}{10301}$ (4)	-133 (3)	$\frac{37}{2}$	029	$\frac{1}{3000}$ (2)	10914(2) 11208(3)	4520 (2)	$\frac{42}{64}$ (1)
C25	1375(3)	10391(3) 10240(3)	1514(3)	$\frac{31}{20}$	w1	-686(2)	1296 (3)	4325(3)	42(1)
C20	941(3)	0763(3)	51(3)	$\frac{2}{35}(2)$	w2	-451(2)	1200 + (3)	-788(2)	$\frac{1}{42}(1)$
C28	657 (2)	8963 (3)	-35(3)	$\frac{33}{28}(2)$	w3	428 (2)	11698 (3)	-717(2)	45(2)
C29	5006 (4)	11445(5)	786 (4)	80 (4)	w4	640(2)	12206 (3)	1119(2)	43(2) 42(1)
C30	5209 (4)	12218 (4)	1124 (4)	63(3)	w5	120(2)	12200(3) 11258(3)	2879(3)	55 (2)
C31	4578 (3)	10190(4)	1029 (4)	50(2)	w6	-304(2)	9655 (3)	3207(3)	62(2)
C32	4335 (3)	9737 (4)	1606 (4)	38(2)	w7	176(2)	8582 (3)	2156 (3)	52(2)
C33	5523 (4)	10417 (7)	1420 (6)	94 (5)	w8	-242(2)	10112 (3)	1604 (3)	65 (2)
C34	5632 (5)	10081 (8)	2023 (9)	61 (5)	w9	3327 (3)	8963 (4)	4087 (3)	81 (2)
C34′	5937 (8)	10665 (13)	1998 (11)	70 (8)	w10	4582 (3)	9250 (4)	3900 (4)	112(3)
C35	6012 (4)	11035 (7)	3039 (6)	114 (5)	w11	3946 (2)	8321 (3)	2721 (3)	60 (2)
C36	5796 (4)	11434 (5)	3648 (5)	78 (4)	w12	3083 (2)	759 (3)	1237 (3)	64 (2)
C37	5156 (3)	12464 (4)	3888 (4)	55 (3)	w13	3051 (2)	4446 (4)	1592 (3)	77 (2)
C38	4748 (3)	13002 (4)	3495 (4)	46 (2)	w14	3132 (2)	172 (4)	5098 (3)	81 (3)
C39	4023 (3)	13036 (4)	2564 (4)	47 (2)	w15	3321 (3)	8724 (5)	476 (4)	112 (3)
C40	3708 (3)	12537 (4)	1997 (4)	51 (2)	w16	3721 (3)	2378 (5)	272 (3)	106 (3)
C41	3919 (3)	12210 (4)	3582 (4)	42 (2)	w17	3420 (3)	4157 (5)	4863 (4)	109 (3)
C42	4092 (3)	11426 (4)	3901 (3)	39 (2)	w18	2380 (3)	4933 (5)	2663 (4)	121 (4)
NI	2064 (2)	12043 (3)	3142 (3)	31 (2)	w19	3097 (3)	5218 (6)	3863 (5)	138 (4)
N2	1363 (2)	10220 (3)	4937 (2)	28 (1)	w20	1270 (3)	5072 (6)	2736 (6)	154 (5)
N3	2135 (2)	7859 (3)	2279 (2)	31 (2)	w21	3562 (5)	7427 (10)	4619 (8)	301 (9)
N4	1495 (2)	9732 (3)	392 (2)	31 (2)	w22	4445 (8)	4806 (10)	351 (10)	301 (12)
<u>N5</u>	4984 (2)	10788 (3)	1287 (3)	44 (2)	w23	0660 (11)	11944 (18)	1490 (17)	78 (12)

^a Esd's in the least significant digits are given in parentheses. ^b For these values, the equivalent isotropic U is defined as 1/3 of the trace of the U_{ij} ensor.

to calcium counterions, and oxygen atoms of occluded water molecules.

Resolvable disorder was seen at one position (C34, C34') of the backbone of one of the three EGTA⁴⁻ ligands. Refinement of the site occupancy factor for C34 yielded a final value of 0.62 (1). High values were exhibited for thermal parameters of oxygen atoms of three occulaed water molecules (w21, w22, w23); refinement of site occupancy factors for these atoms yielded values significantly less than 1.0 only for w22 (0.81 (3)) and w23 (0.21 (2)). The values of the site occupancy factors for these two atoms were fixed at 0.8 and 0.2 during the final refinement cycles. Interpretation of residual electron density as oxygen atoms of occluded water molecules was terminated at a level of 1 e Å⁻³.

Although hydrogen atoms of water molecules were visible in the ΔF map, they were not included in the final structural model. All non-hydrogen atoms were given anisotropic thermal parameters. Hydrogen atoms of the EGTA⁴⁺ ligands were included in idealized positions (C-H = 0.96 Å, $U(H) = 1.2U_{iso}(C)$). The weighted refinement ($w = [\sigma^2(F_o) + |g|F_o^2]^{-1}$) on F converged ((shift/esd)_{av} < 0.068 over the last 10 cycles) to yield the R values in Table II. In the final ΔF map, the highest peaks (1 e Å⁻³) occurred near occluded water molecules; the minimum in the map was -0.5 e Å⁻³.

Final fractional atomic coordinates for all non-hydrogen atoms of 1 are listed in Table III. Metric parameters relevant to the chelated calcium ions, the partially aquated Ca^{2+} counterions, and the interionic interactions between these species are listed in Table IV (parts a, b, and c, respectively). Ligand structural parameters (Table V) have also been tabulated.

Structure Determination for Sr[Cd(EGTA)]-7H₂O, 2. Crystal data for 2, together with details of the X-ray diffraction experiment and subsequent calculations, are given in Table II. The unit cell dimensions were obtained from a least-squares fit to the setting angles of 24 reflections $(2\theta(ave) = 18.8^{\circ})$. The intensities of three reflections (1200, 040, 0012) were measured every 100 reflections. No significant change in the intensities of these reflections data collection. An empirical absorption correction was performed, utilizing the intensity profiles obtained for 14 reflections as a function of $\Psi (\Delta \Psi = 15^{\circ})$. The range of transmission factors exhibited for the complete data set was $\pm 6\%$ of the mean value. Lorentz and polarization corrections were applied to the data.

Analysis of the Patterson map established the positions of the Sr^{2+} and Cd^{2+} ions. Subsequent ΔF electron density maps revealed all non-hy-

Table IV. Metal-Ligand Distances (Å) and Angles $(deg)^a$ for Ca[Ca(EGTA)]·(²²/₃)H₂O

complex a				complex b			complex c				
Cal-N1	2.617 (5)	Ca1-05	2.502 (4)	Ca2-N3	2.613 (5)	Ca2-O15	2.550 (4)	Ca3-N5	2.575 (6)	Ca3-O25	2.426 (6)
Cal-N2	2.603 (5)	Cal-O6	2.473 (4)	Ca2–N4	2.602 (5)	Ca2-O16	2.477 (4)	Ca3-N6	2.567 (5)	Ca3-O26	2.483 (5)
Cal-Ol	2.375 (5)	Cal-O7	2.404 (4)	Ca2-O11	2.347 (4)	Ca2-O17	2.392 (4)	Ca3-O21	2.379 (5)	Ca3–O27	2.365 (5)
Ca1-O3	2.386 (4)	Ca1-09	2.365 (4)	Ca2-O13	2.374 (4)	Ca2-019	2.375 (4)	Ca3-O23	2.412 (4)	Ca3-O29	2.397 (5)
N1-Ca1-N2	144.9 (2)	O5-Ca1-O6	66.5 (1)	N3-Ca2-N4	142.7 (1)	O15-Ca2-O16	65.2 (1)	N5-Ca3-N6	147.0 (2)	O25-Ca3-O26	65.1 (2)
NI-Cal-OI	66.3 (2)	NI-Cal-O7	94.8 (1)	N3-Ca2-O11	65.8 (1)	N3-Ca2-O17	95.2 (1)	N5-Ca3-O21	67.1 (2)	N5-Ca3-O27	91.3 (2)
N2-Ca1-O1	83.0 (2)	N2-Ca1-O7	65.6 (1)	N4-Ca2-O11	80.8 (1)	N4-Ca2-O17	66.0(1)	N6-Ca3-O21	87.0 (2)	N6-Ca3-O27	66.7 (2)
N1-Ca1-O3	66.3 (1)	O1-Ca1-O7	86.6 (1)	N3-Ca2-O13	66.7 (1)	O11-Ca2-O17	87.6 (1)	N5-Ca3-O23	66.7 (2)	O21–Ca3–O27	88.1 (2)
N2-Ca1-O3	135.5 (1)	O3-Ca1-O7	86.3 (1)	N4-Ca2-O13	138.6 (1)	O13-Ca2-O17	87.5 (1)	N6-Ca3-O23	130.2 (2)	O23-Ca3-O27	83.7 (2)
O1-Ca1-O3	131.2 (2)	O5-Ca1-O7	161.9 (1)	O11-Ca2-O13	131.5 (1)	O15-Ca2-O17	161.5 (1)	O21-Ca3-O23	132.8 (2)	O25-Ca3-O27	160.7 (2)
N1-Ca1-O5	70.4 (1)	O6-Ca1-O7	131.4 (1)	N3-Ca2-O15	69.1 (1)	O16-Ca2-O17	133.0 (1)	N5-Ca3-O25	69.8 (2)	O26-Ca3-O27	132.6 (2)
N2-Ca1-O5	132.4 (1)	N1-Ca1-O9	143.9 (1)	N4-Ca2-O15	132.4 (1)	N3-Ca2-O19	147.0 (1)	N6-Ca3-O25	132.0 (2)	N5-Ca3-O29	138.2 (2)
O1-Ca1-O5	96.4 (1)	N2-Ca1-O9	68.6 (1)	O11-Ca2-O15	94.4 (1)	N4-Ca2-O19	68.1 (1)	O21-Ca3-O25	88.3 (2)	N6-Ca3-O29	70.2 (2)
O3-Cal-O5	78.3 (1)	O1-Ca1-O9	149.7 (2)	O13-Ca2-O15	77.4 (1)	O11-Ca2-O19	147.2 (1)	O23-Ca3-O25	84.9 (2)	O21-Ca3-O29	154.5 (2)
N1-Ca1-O6	120.2 (1)	O3-Ca1-O9	78.6 (1)	N3-Ca2-O16	117.4 (1)	O13-Ca2-O19	80.9 (1)	N5-Ca3-O26	123.9 (2)	O23-Ca3-O29	72.4 (1)
N2-Ca1-O6	66.6(1)	O5-Ca1-O9	95.3 (1)	N4-Ca2-O16	67.7 (1)	O15-Ca2-O19	98.7 (1)	N6-Ca3-O26	67.0 (2)	O25-Ca3-O29	98.6 (2)
O1-Ca1-O6	79.3 (1)	O6-Ca1-O9	79.9 (1)	O11-Ca2-O16	77.4 (1)	O16-Ca2-O19	81.1 (1)	O21-Ca3-O26	79.7 (2)	O26-Ca3-O29	81.0 (2)
O3-Ca1-O6	136.5 (1)	O7-Ca1-O9	90.8 (1)	O13-Ca2-O16	135.0 (1)	O17-Ca2-O19	89.2 (1)	O23Ca3O26	136.3 (2)	O27-Ca3-O29	92.8 (2)

a. Complex lons

b. Counterions

	coun	terion 1			count	terion 2			counter	rion 3	
Ca4-w1	2.393 (5)	Ca4–O9a	2.540 (4)	Ca5-07	2.526 (4)	Ca5-w5	2.485 (5)	Ca6-O2	2.325 (5)	Ca6-w9	2.452 (6)
Ca4-w2	2.437 (4)	Ca4–O10a	2.461 (4)	Ca508	2.485 (4)	Ca5-w6	2.395 (5)	Ca6-O12	2.381 (4)	Ca6-w10	2.408 (7)
Ca4–w3	2.430 (5)	Ca4-O19a	2.542 (4)	Ca5-O17	2.525 (4)	Ca5-w7	2.467 (5)	Ca6-O23	2.407 (5)	Ca6-w11	2.469 (5)
Ca4-w4	2.386 (4)	Ca4–O20a	2.447 (4)	Ca5018	2.470 (5)	Ca5–w8	2.392 (5)	Ca6O29	2.473 (4)		
w1-Ca4-w2	98.6 (2)	O9a-Ca4-O10a	52.3 (1)	O7-Ca5-O8	52.1 (1)	w5-Ca5-w6	74.9 (2)	O2-Ca6-O12	75.6 (2)	w9-Ca6-w10	80.5 (2)
w1-Ca4-w3	154.5 (2)	w1-Ca4-O19a	79.3 (1)	07-Ca5-017	93.9 (1)	O7-Ca5-w7	130.1 (1)	O2-Ca6-O23	114.9 (2)	O2-Ca6-w11	143.3 (2)
w2-Ca4-w3	88.5 (1)	w2-Ca4-O19a	75. 9 (1)	O8-Ca5-O17	83.8 (1)	O8-Ca5-w7	78.0 (1)	O12-Ca6-O23	82.5 (1)	O12-Ca6-w11	75.8 (2)
w1-Ca4-w4	87.8 (2)	w3-Ca4-O19a	78.7 (1)	O7-Ca5-O18	84.9 (1)	O17-Ca5-w7	77.7 (1)	O2-Ca6-O29	75.6 (2)	O23-Ca6-w11	83.4 (2)
w2-Ca4-w4	153.6 (2)	w4-Ca4-O19a	130.5 (1)	O8-Ca5-O18	117.3 (2)	O18-Ca5-w7	122.4 (2)	O12-Ca6-O29	127.3 (1)	O29-Ca6-w11	140.9 (2)
w3-Ca4-w4	96.7 (2)	O9a-Ca4-O19a	141.7 (1)	O17-Ca5-O18	52.5 (1)	w5-Ca5-w7	143.7 (2)	O23-Ca6-O29	71.2 (1)	w9-Ca6-w11	83.5 (2)
w1-Ca4-O9a	129.2 (1)	O10a-Ca4-O19a	140.9 (1)	O7–Ca5–w5	75.4 (1)	w6-Ca5-w7	75.9 (2)	O2-Ca6-w9	77.9 (2)	w10-Ca6-w11	77.7 (2)
w2-Ca4-O9a	74.8 (1)	wl-Ca4-O20a	77.5 (1)	O8-Ca5-w5	119.8 (2)	O7-Ca5-w8	155.3 (2)	O12-Ca6-w9	97.2 (2)		
w3-Ca4-O9a	76.3 (1)	w2Ca4O20a	127.9 (1)	O17-Ca5-w5	132.0 (2)	O8-Ca5-w8	151.4 (2)	O23-Ca6-w9	166.5 (2)		
w4-Ca4-O9a	81.3 (1)	w3-Ca4-O20a	78.8 (1)	O18-Ca5-w5	79.7 (2)	O17-Ca5-w8	96.3 (2)	O29-Ca6-w9	118.3 (2)		
w1-Ca4-O10a	76.9 (1)	w4-Ca4-O20a	78.4 (1)	O7-Ca5-w6	98.3 (2)	O18-Ca5-w8	83.6 (2)	O2-Ca6-w10	128.7 (2)		
w2-Ca4-O10a	77.5 (1)	O9a-Ca4-O20a	145.6 (1)	O8-Ca5-w6	84.7 (2)	w5-Ca5-w8	81.1 (2)	O12-Ca6-w10	153.5 (2)		
w3-Ca4-O10a	128.6 (1)	O10a-Ca4-O20a	146.4 (1)	O17-Ca5-w6	152.8 (2)	w6Ca5w8	82.5 (2)	O23-Ca6-w10	93.8 (2)		
w4-Ca4-O10a	79.2 (1)	O19a-Ca4-O20a	52.2 (1)	O18-Ca5-w6	152.6 (2)	w7-Ca5-w8	74.2 (2)	O29-Ca6-w10	74.9 (2)		
	c. Interionic Angles										
Ca6O2C2	164.9 (4)	C14-O10-Ca4b	94.1 (3)	C28-O19-Ca4a	90.5 (3)	Ca5-O8-C12	92.9 (3)	Ca5-O17-C26	91.1 (3)	Ca6-O23-C32	127.8 (4)
Cal-O7-Ca5	146.9 (2)	Ca6-O12-C16	140.9 (4)	C28-O20-Ca4a	94.9 (3)	Cal-O9-Ca4b	146.7 (2)	Ca5-O18-C26	93. 9 (3)	Ca3-O29-Ca6	106.8 (2)
Ca5-07-C12	90.7 (3)	Ca2-O17-Ca5	144.8 (2)	Ca3-O23-Ca6	108.5 (2)	C14-O9-Ca4b	89.9 (3)	Ca2-O19-Ca4a	146.1 (2)	Ca6-O29-C42	121.2 (4)

^a Esd's in the least significant digits are given in parentheses.

Table V. Chelate Ring^a Bonding Parameters^b for $Ca[Ca(EGTA)] \cdot (^{22}/_3)H_2O$

Glycinate Rings

	CC'	C'-N	C-0	C-0'	C-C'-N
G1	1.504 (9)	1.466 (8)	1.254 (8)	1.249 (8)	112.1 (5)
G2	1.503 (9)	1.460 (7)	1.272 (7)	1.240 (7)	115.0 (5)
G3	1.527 (8)	1.456 (7)	1.261 (7)	1.247 (7)	109.5 (5)
G4	1.514 (8)	1.479 (8)	1.261 (7)	1.243 (7)	114.0 (5)
G5	1.515 (9)	1.478 (8)	1.265 (7)	1.252 (7)	111.4 (5)
G6	1.497 (8)	1.475 (8)	1.267 (7)	1.257 (7)	113.6 (5)
G7	1.500 (8)	1,460 (7)	1.269 (7)	1.260 (7)	109.3 (5)
G8	1.515 (8)	1.457 (8)	1.254 (7)	1.255 (7)	114.8 (5)
G9	1.516 (11)	1.461 (10)	1.257 (9)	1.247 (10)	113.3 (6)
G10	1.492 (10)	1.470 (9)	1.273 (8)	1.240 (7)	113.3 (6)
GII	1.528 (10)	1.451 (8)	1.262 (9)	1.239 (9)	113.0 (5)
G12	1.498 (9)	1.4/4 (9)	1.270 (8)	1.250 (8)	114.8 (5)
	0-C-0'	C'-C-0	C'-C-O'	Ca-N-C'	Ca-O-C
Gl	124.0 (6)	118 1 (5)	117.9 (6)	105.7 (3)	123.2.(4)
G2	124.2 (6)	117.6 (5)	118.1(5)	111.0 (3)	125.2(1) 125.9(4)
G3	122.8 (5)	118.6 (5)	118.6 (5)	106.1(3)	121.3(3)
G4	123.4 (5)	118.1 (5)	118.2 (5)	107.5 (3)	123.2 (3)
G5	123.4 (6)	117.9 (5)	118.6 (5)	105.6 (3)	123.0 (4)
G6	123.5 (5)	118.8 (5)	117.6 (5)	110.6 (3)	125.3 (4)
G7	121.6 (5)	118.7 (5)	119.7 (5)	105.4 (3)	121.0 (4)
G8	122.3 (5)	119.6 (5)	118.1 (5)	109.6 (3)	123.4 (3)
G9	125.2 (7)	118.1 (7)	116.7 (7)	107.8 (4)	122.7 (5)
G10	124.1 (6)	118.4 (5)	117.5 (6)	109.7 (4)	122.8 (4)
G11	125.0 (7)	117.1 (6)	117.8 (6)	105.8 (4)	121.2 (4)
G12	124.3 (6)	117.3 (5)	118.2 (6)	105.4 (3)	118.8 (4)
		Amino	Ether Ring	gs	
	 C-C'	C-N	C'-0	C-C'-O	C'-C-N
	1,496 (9)	1.474 (8)	1.452 (8)	110.6 (5)	113.5 (5)
A2	1.519 (9)	1.467 (7)	1.422 (8)	105.3 (5)	111.9 (5)
A3	1.501 (9)	1.464 (8)	1.435 (7)	111.2 (5)	112.8 (5)
A4	1.514 (8)	1.484 (8)	1.418 (7)	107.8 (5)	109.6 (5)
A5	1.29 (2)	1.46 (1)	1.54 (2)	112.3 (12)	118.0 (10)
A6	1.50 (1)	1.461 (8)	1.430 (9)	106.6 (5)	112.1 (5)
	C''-N-Ct	C-N-C"	C-N-Ct		<u>Ca-O-C'</u>
	112.2 (5)	110.5.(5)	1111(5)		
A1 A2	110.3 (3)	110.5(3) 1121(4)	1100(5)	104.8(4) 109.6(2)	112.8 (3)
A 3	110.3(4)	112.1(4)	110.9(3)	109.0(3)	113.0(3)
AJ A4	109.8(4)	112.1(5)	111.0(3)	108.2(3)	115.0(5)
A 5	109.0(4)	112.1(3)	1101(6)	107.4(5)	109.3(6)
A6	110.9 (5)	111.8 (5)	112.0 (5)	110.7(4)	117.7(4)
		Diet	her Rings		
	C-C'	C'-O'	С-О	C'-C-O	C-C'-O'
Еl	1.49 (1)	1.431 (8)	1.444 (8)	107.5 (5)	107.8 (5)
E2	1.491 (9)	1.422 (7)	1.418 (8)	108.8 (5)	106.8 (5)
E3	1.47 (2)	1.42 (1)	1.41 (1)	109.2 (8)	106.5 (8)
	C'-O'-	-C [†] C''-C	О-С С:	a-O-C (Ca-O'-C'
——————————————————————————————————————	112.8	(5) 112.4	(5) 11	3,3 (3) 1	15.8 (3)
E2	114.3	(4) 113.2	(5) 11	4.4 (3) 1	16.7 (3)
E3	114.3	(6) 125.8	(8) 11	8.4 (6) 1	15.9 (5)

^aChelate ring designations have been assigned systematically, as follows. Within each series, rings are numbered according to increasing oxygen atom number. For glycinate rings, C' is adjacent to N, and O' is the carboxylate oxygen atom not bound to the metal in the EGTA chelate. Within amino ether rings, C' is adjacent to O, and C is adjacent to N; C'' and C⁺ are also attached to N, with C'' possessing the lower number of these two atoms. Within diether rings, C' is also bound to O' (always odd numbered), and C is bound to O; C'' is also bound to O, and C⁺ is bound to O'. ^bBond lengths are given in Å, and bond angles are given in deg. Esd's in the least significant digits are given in parentheses.

drogen ligand atoms and the oxygen atoms of seven water molecules (four of which were bound to the partially aquated Sr^{2+} cation). In the final structural model, all non-hydrogen atoms were given anisotropic thermal parameters. Hydrogen atoms of the EGTA⁴⁻ ligand were included as in the structural model for 1. At convergence (weighted least squares

Table VI. Atomic Coordinates (×10⁴) and Isotropic Thermal Parameters (Å² × 10³)^a for Sr[Cd(EGTA)]-7H₂O

arameters	(11 / 10) 10		.,, ,	
atom	x	y	Z	$U_{iso}{}^{b}$
Cd	7566 (1)	617 (1)	106 (1)	31 (1)
Sr	9211 (1)	5310(1)	804 (1)	36 (1)
C1	6360 (3)	-1953 (5)	535 (2)	39 (1)
C2	6166 (2)	-1746 (4)	-333 (2)	35 (1)
C3	7078 (3)	-801 (5)	1697 (2)	43 (1)
C4	7804 (3)	205 (5)	1910 (2)	35 (1)
C5	5974 (3)	613 (5)	948 (3)	44 (1)
C6	6252 (3)	2288 (5)	1117 (3)	44 (1)
C7	6188 (3)	3648 (5)	-80 (3)	46 (1)
C8	6700 (3)	4046 (5)	-688 (3)	43 (1)
C9	7528 (3)	2786 (5)	-1504 (2)	42 (1)
C10	7816 (3)	1161 (5)	-1694 (2)	39 (1)
C11	8291 (3)	-1369 (5)	-1190 (2)	38 (1)
C12	8428 (2)	-2396 (5)	-473 (2)	37 (1)
C13	9051 (2)	990 (5)	-808 (2)	37 (1)
C14	9089 (2)	2373 (4)	-259 (2)	31 (1)
N1	6658 (2)	-490 (4)	926 (2)	35 (1)
N2	8248 (2)	325 (4)	-1026 (2)	33 (1)
01	6523 (2)	-653 (4)	-648 (2)	46 (1)
O2	5687 (2)	-2695 (4)	-670 (2)	48 (1)
O3	8155 (2)	765 (4)	1386 (2)	47 (1)
O4	8048 (2)	367 (4)	2607 (2)	47 (1)
O5	6690 (2)	2869 (3)	528 (2)	40 (1)
O 6	6992 (2)	2591 (3)	-944 (2)	39 (1)
O 7	8348 (2)	-1794 (4)	161 (2)	43 (1)
O 8	8597 (2)	-3826 (3)	-571 (2)	45 (1)
O 9	8514 (2)	2622 (3)	117 (2)	36 (1)
O 10	9713 (2)	3207 (3)	-182 (2)	40 (1)
w 1	9365 (3)	2885 (6)	1675 (2)	102 (2)
w2	10657 (2)	5257 (4)	1714 (2)	51 (1)
w3	9140 (2)	7590 (5)	1756 (2)	69 (1)
w4	7806 (2)	5039 (4)	1195 (2)	51 (1)
w5	5292 (2)	5967 (5)	1922 (2)	68 (1)
w6	4464 (2)	2966 (4)	2178 (2)	64 (1)
w7	10581 (2)	3917 (5)	3123 (2)	65 (1)

^a Esd's in the least significant digits are given in parentheses. ^b For these values, the equivalent isotropic U is defined as 1/3 of the trace of the U_{ij} tensor.

refinement on F, (shift/esd)_{av} < 0.052 over the last four cycles) the final ΔF map exhibited a maximum of 0.67 e Å⁻³ in the immediate vicinity of Cd²⁺ and a minimum of -0.35 e Å⁻³.

Final fractional atomic coordinates for all non-hydrogen atoms of **2** are listed in Table VI. Metric parameters relevant to the chelated cadmium ion, the partially aquated Sr^{2+} counterion, and the interionic interactions between these species are listed in Table VII (parts a, b, and c, respectively). Ligand structural parameters (Table VIII) have also been tabulated.

Results and Discussion

Structure of Ca[Ca(EGTA)] $(^{22}/_{3})$ H₂O, 1. The asymmetric unit of the unit cell contains three [Ca(EGTA)]²⁻ anions (anion a, Cal; b, Ca2; c, Ca3); anion a, containing Cal, is pictured in Figure 1a. Since the most commonly observed coordination number for calcium is eight, 41,42 it is not surprising that the EGTA⁴⁻ ligand utilizes its full octadentate chelating capability in binding to Ca²⁺ in each of the [Ca(EGTA)]²⁻ complexes. The ligand atoms about calcium in each of the three [Ca(EGTA)]²⁻ complexes occupy the vertices of dodecahedra that are distorted by constraints associated with the chelate rings. A dodecahedron is formed by the orthogonal intersection of two equivalent trapezoids (each represented as BAAB, with AA being the shorter of the two parallel edges). In complex a, for example (see Figure 1b), one such trapezoid contains N2 and O6 (A sites) as well as O5 and O7 (B sites), while the second trapezoid contains O3 and N1 (A sites) together with O1 and O9 (B sites).

The three Ca^{2+} counterions are coordinated by water molecules and by the oxygen atoms of carboxylate groups that bridge be-

⁽⁴¹⁾ Einspahr, H.; Bugg, C. E. in ref 3, Chapter 2, p 51.

⁽⁴²⁾ Einspahr, H.; Bugg, C. E. in *Calcium Binding Proteins and Calcium Function*; Wasserman, R. H.; Corradino, R. A.; Carafoli, E.; Kretsinger, R. H.; Maclennan, D. H.; Siegel, F. L., Eds.: Elsevier North-Holland: 1977, p 13.

Table VII. Metal-Ligand Distances (Å) and Angles $(deg)^a$ for $Sr[Cd(EGTA)]{\boldsymbol{\cdot}}7H_2O$

a. Complex Ion							
Cd-N1 Cd-N2 Cd-O1 Cd-O3	2.421 (4) 2.437 (3) 2.324 (3) 2.347 (3)	Cd-O5 Cd-O6 Cd-O7 Cd-O9	2.574 (3) 2.585 (3) 2.420 (3) 2.325 (3)				
N1-Cd-N2 N1-Cd-O1 N1-Cd-O3 N2-Cd-O3 O1-Cd-O3 N1-Cd-O5 N2-Cd-O5 O1-Cd-O5 O3-Cd-O5 N1-Cd-O5 N1-Cd-O6 N2-Cd-O6 O1-Cd-O6 O1-Cd-O6 O3-Cd-O6	$148.0 (1) \\71.0 (1) \\83.4 (1) \\70.6 (1) \\127.3 (1) \\140.2 (1) \\71.7 (1) \\131.1 (1) \\95.1 (1) \\82.5 (1) \\118.1 (1) \\69.6 (1) \\72.8 (1) \\136.6 (1)$	O5-Cd-O6 N1-Cd-O7 N2-Cd-O7 O1-Cd-O7 O5-Cd-O7 O5-Cd-O7 N1-Cd-O9 N2-Cd-O9 O1-Cd-O9 O3-Cd-O9 O3-Cd-O9 O5-Cd-O9 O5-Cd-O9 O5-Cd-O9 O7-Cd-O9	$\begin{array}{c} 63.5 (1) \\ 91.8 (1) \\ 68.7 (1) \\ 90.0 (1) \\ 81.2 (1) \\ 159.9 (1) \\ 136.3 (1) \\ 139.5 (1) \\ 71.7 (1) \\ 143.9 (1) \\ 75.4 (1) \\ 82.8 (1) \\ 74.2 (1) \\ 104.2 (1) \end{array}$				
	b. Cou	interion					
Sr-O9 Sr-O10 Sr-w1 Sr-w2 Sr-w3	2.764 (3) 2.696 (3) 2.554 (5) 2.734 (3) 2.567 (4)	Sr-w4 Sr-O7a Sr-O8a Sr-O10a	2.555 (3) 2.995 (3) 2.614 (3) 2.559 (3)				
O9-Sr-O10 O9-Sr-w1 O10-Sr-w2 O10-Sr-w2 O10-Sr-w2 W1-Sr-w2 O9-Sr-w3 W1-Sr-w3 W2-Sr-w3 O9-Sr-w4 O10-Sr-w4 W1-Sr-w4 W2-Sr-w4 W3-Sr-w4 O9-Sr-O7a O10-Sr-O7a W1-Sr-O7a	47.6 (1) 66.9 (1) 80.9 (1) 122.6 (1) 92.2 (1) 67.7 (1) 148.3 (1) 163.9 (1) 102.7 (1) 75.1 (1) 71.9 (1) 119.4 (1) 78.0 (1) 128.6 (1) 76.7 (1) 110.4 (1) 118.1 (1) 153.0 (1)	w2-Sr-O7a w3-Sr-O7a 09-Sr-O8a 010-Sr-O8a w1-Sr-O8a w3-Sr-O8a w4-Sr-O8a 07a-Sr-O8a 010-Sr-O10a 010-Sr-O10a w1-Sr-O10a w3-Sr-O10a w4-Sr-O10a w4-Sr-O10a 07a-Sr-O10a o7a-Sr-O10a	$126.0 (1) \\ 64.7 (1) \\ 75.8 (1) \\ 74.2 (1) \\ 72.9 (1) \\ 141.2 (1) \\ 139.8 (1) \\ 110.5 (1) \\ 90.3 (1) \\ 46.0 (1) \\ 119.9 (1) \\ 75.6 (1) \\ 128.9 (1) \\ 68.6 (1) \\ 90.4 (1) \\ 152.6 (1) \\ 76.8 (1) \\ 71.6 (1) \\ \end{array}$				
	c. Interio	nic Angles					
Cd-O7-Sra C12-O7-Sra C12-O8-Sra Cd-O9-Sr	159.7 (1) 84.4 (2) 102.1 (2) 148.7 (1)	Sr-O9-C14 Sr-O10-C14 Sr-O10-Srb C14-O10-Srb	93.2 (2) 96.5 (2) 104.4 (1) 148.7 (2)				

^aEsd's in the least significant digits are given in parentheses.

tween the $[Ca(EGTA)]^{2-}$ complex anions and the partially aquated counterions. Such bridging in 1 is so extensive that no discrete $[Ca(EGTA)]^{2-}$ anions exist in the solid. Three modes of carboxylate bridging occur in 1 (see Figure 2a). A bridging carboxylate group is described as bidentate if both oxygen atoms are bound to a counterion (see, for example, O7 and O8 bridging to Ca5). A bridge that involves only the carboxylate oxygen atom that is *not* coordinated to Ca²⁺ of the $[Ca(EGTA)]^{2-}$ complex is described as unidentate(O') (see, for example, O2 bridging to Ca6). Finally, a bridge that involves only the carboxylate oxygen atom that is coordinated to Ca²⁺ of the $[Ca(EGTA)]^{2-}$ complex is described as unidentate(O) (see, for example, O29 bridging to Ca6). All three bridging modes seen in 1 have been previously observed,^{42,43} but never before in the same material.

Complex anions a and b exhibit identical bridging patterns and are related by an approximate noncrystallographic twofold axis passing through Ca5. Three of the carboxylate groups in each

Figure 1. (a) Thermal ellipsoid plot (40%) of the $[Ca(EGTA)]^{2-}$ complex anion involving Ca1. The numbering scheme for the complex anions involving Ca2 and Ca3 may be derived as follows: for Cx, x = 14(n - 1) + a; for Ox, x = 10(n - 1) + a; for Nx, x = 2(n - 1) + a; n = complexanion number, a = atom number in the complex involving Ca1. (b) The dodecahedron of ligand atoms about Ca1. (c) Thermal ellipsoid plot (40%) of $[Cd(EGTA)]^{2-}$. The numbering scheme for the ligand is identical with that employed in the $[Ca(EGTA)]^{2-}$ anion in Figure 1a.

of these $[Ca(EGTA)]^{2-}$ anions act as external donors, bridging to the Ca²⁺ counterions (Ca4, Ca5, and Ca6). Two of these three carboxylate groups bridge in a bidentate fashion (O7/O8 and O9/O10 in a, O17/O18 and O19/O20 in b), while the remaining group (O1/O2 in a, O11/O12 in b) bridges in a unidentate(O') fashion. In anion c, only two of the four carboxylate groups bridge to counterions. Both of these groups (O23/O24 and O29/O30) bridge in a unidentate(O) manner; anion c thus functions as a bidentate ligand with respect to Ca6 (see Figure 2a).

⁽⁴³⁾ Ancillotti, F.; Boschi, G.; Perego, G.; Zazzetta, A. J. Chem. Soc., Dalton Trans. 1977, 901.

Table VIII. Chelate Ring^a Bonding Parameters^b for Sr[Cd(EGTA)]·7H₂O

	Glycinate Rings							
	C-C'	C'-N	C-0	C-0′	C-C'-N			
G1	1.533 (6)	1.472 (5)	1.267 (5)	1.234 (5)	112.8 (3)			
G2	1.496 (6)	1.472 (5)	1.252 (5)	1.251 (5)	114.2 (4)			
G3	1.526 (6)	1.465 (5)	1.250 (5)	1.258 (5)	113.6 (3)			
G4	1.514 (6)	1.467 (5)	1.257 (5)	1.256 (5)	115.2 (3)			
	0-C-0′	C'-C-O	C'-C-O'	Cd-N-C'	Cd-O-C			
Gl	125.5 (4)	117.9 (3)	116.6 (4)	104.4 (2)	116.9 (2)			
G2	·123.8 (4)	118.5 (3)	117.6 (4)	110.8 (2)	120.5 (3)			
G3	124.5 (4)	119.0 (4)	116.5 (4)	107.4 (2)	115.3 (2)			
G4	122.5 (3)	119.5 (3)	118.0 (3)	105.1 (2)	116.5 (2)			
		Amino	Ether Ring	s				
	C-C'	C-N	C'0	CC'O	C'-C-N			
Al	1.509 (6)	1.485 (5)	1.433 (6)	110.7 (4)	111.9 (3)			
A2	1.508 (6)	1.481 (5)	1.427 (5)	107.3 (3)	113.4 (3)			
	C"-N-C [†]	C-N-C"	C-N-C [†]	Cd-N-C	Cd-O-C'			
Al	112,1 (3)	108.7 (3)	111.7 (3)	108.8 (2)	108.7 (2)			
A2	111.1 (3)	110.0 (3)	111.5 (3)	111.5 (2)	111.0 (2)			

Diether Ring

	C-C'	C'O'	С-О	С′-С-О	C-C'-O'
El	1.498 (7)	1.419 (5)	1.437 (5)	107.4 (3)	106.7 (3)
	C'-0'-	C [†] C''-	0-C Co	I-0-C	Cd-O'-C'
El	113.2 (3) 112.	9 (3) 11	5.3 (2)	116.4 (2)

^{*a*}Chelate ring designations are described in footnote a of Table V. ^{*b*}Bond lengths are given in Å and bond angles in deg. Esd's in the least significant digits are given in parentheses.

Of the three Ca^{2+} counterions, two (Ca4 and Ca5) are eight-coordinate and exhibit similar ligand arrays. Each of these ions is coordinated by two bidentate bridging carboxylate groups from [Ca(EGTA)]²⁻ anions (O7/O8 and O17/O18 for Ca5, for example) and by oxygen atoms of four water molecules. The coordination spheres about Ca4 and Ca5 are distorted dodecahedra. Significant differences exist in the arrangements of ligand atoms in those coordination spheres, however. In the two trapezoids of the dodecahedron about Ca4, oxygen atoms of bidentate carboxylate groups occupy A sites, while oxygen atoms of water molecules occupy B sites. About Ca5, on the other hand, oxygen atoms of bidentate carboxylate groups occupy an A and a B site in each trapezoid.

The third counterion, Ca6, is only seven-coordinate. Among the ligands about Ca6 are three water molecules and the oxygen atoms of four bridging carboxylate groups, two of the unidentate(O') type and two of the unidentate(O) type. The ligand atoms bound to Ca6 occupy the vertices of a distorted monocapped trigonal prism, with triangular faces outlined by O29, O23, and w10 and by O2, O12, and w9. The oxygen atom of water molecule w11 caps the rectangular w10–O23–O12–w9 face (see Figure 2a). The lower coordination number for Ca6 may be due to greater steric requirements of unidentate bridging carboxylate groups.

The $[Ca(EGTA)]^{2-}$ anions and the partially aquated Ca^{2+} counterions are linked by the carboxylate bridges into polymeric chains, which are propagated parallel to the *bc* plane. In addition, hydrogen bonds connect carboxylate groups and coordinated water molecules to occluded solvent water molecules. Every carboxylate oxygen atom in 1 is involved in an interaction with a metal ion or a water molecule. Anion c bridges to only one cation (Ca6) and therefore functions as a side group on the polymer chain. These side groups extend from the chain in the *a* direction and stitch the chains together by hydrogen bonding to water molecules coordinated to cations on adjacent chains. The extensive hydrogen bonding network is an important factor in the stability of crystals of 1.

The Ca-O(carboxylate) bond distances in 1 are a function of the bridging nature of the carboxylate group. Ca-O(carboxylate)

Figure 2. (a) Ball and stick plot depicting all the unique interionic interactions occurring in 1 (see text). In the two complex ions illustrated, all oxygen atoms that are involved in bridging interactions are enlarged. Hollowed bonds highlight the bridging pathways between the [Ca-(EGTA)]²⁻ anions and the calcium counterions. (b) Ball and stick plot depicting all the unique interionic interactions occurring in 2. Conventions used are the same as in Figure 2a.

bonds in the $[Ca(EGTA)]^{2-}$ anions are, with the exception of those involving unidentate(O') bridging groups, shorter than Ca-O-(carboxylate) bonds for the Ca²⁺ counterions. For example, the bidentate bridging carboxylate group O7/O8 binds more strongly to Ca1 (Ca1-O7 = 2.404 (4) Å) than to the Ca5 counterion (Ca5-O7 = 2.526 (4), Ca5-O8 = 2.485 (4) Å). In all of the bidentate bridging groups, the oxygen atom that is not bound to Ca²⁺ of a [Ca(EGTA)]²⁻ anion binds to the counterion at a shorter distance than does the oxygen atom that is bound to both Ca²⁺ ions.

Unidentate(O') bridging carboxylate groups do not exhibit as regular a pattern of Ca–O bond lengths. One unidentate(O') bridging group (O11/O12) exhibits a shorter bond to the Ca²⁺ ion of anion b (Ca2–O11 = 2.347 (4) Å) than to the associated Ca²⁺ counterion (Ca6–O12 = 2.381 (4) Å). The reverse is true (Ca1–O1 = 2.375 (4), Ca6–O2 = 2.325 (5) Å) for the other such group. Similar bond length vs. bridge type patterns occurred in bidentate and unidentate(O') bridges in Ca[Ca(EDTA)].7H₂O.⁴⁴

The two unidentate(O) bridges form a planar Ca_2O_4 unit. The bridge involving O23 is symmetric (Ca3-O23 = 2.412 (4), Ca6-O23 = 2.407 (5) Å), while the bridge involving O29 is nonsymmetric, with O29 binding at a shorter distance to the chelated Ca²⁺ ion (Ca3-O29 = 2.397 (5) Å) than to the Ca²⁺ counterion (Ca6-O29 = 2.473 (4) Å). Comparison with other Ca-O bond distances^{41,42} reveals that all Ca-O(carboxylate) distances in 1 (2.325 (5)-2.542 (4), average = 2.38 (2) Å) fall within the normal range for seven- and eight-coordinate Ca²⁺ ions. In addition, Ca-OH₂ distances in 1 span a range (2.386 (4)-2.485 (5) Å) typical of seven- and eight-coordinate aquated Ca²⁺ complexes.

The question of whether the EGTA⁴⁻ ligand utilizes its ether oxygen atoms in coordinating to various metal ions, including

calcium, has been disputed. $^{45-47}$ In 1, however, the ether oxygen atoms in all three crystallographically independent [Ca(EGTA)]²⁻ complexes are coordinated (Ca–O(ether)_{av} = 2.50 (3) Å). Given the chelating nature of EGTA⁴⁻, it seems likely that the ether oxygen atoms remain bound in solution. The abnormally short Ca3-O25 distance was omitted in calculating the average given above; this distance has clearly been influenced by the disorder present in the chelate ring containing C34. All of the Ca–O(ether) distances (except for Ca3-O25) in 1 fall within the range observed previously for Ca-O(ether) bond lengths. For example, in nine-coordinate $[Ca(2.2.2)Br]^+$ (2.2.2 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexaeicosane),48 Ca-O(ether) distances span a range (2.487 (7)-2.551 (7) Å) almost identical with that in 1 (2.473 (4)-2.550 (4) Å).

The Ca-N bonds in 1 (Ca-N = 2.567 (5)-2.617 (5) Å) are longer than any of the Ca-O bonds. However, the Ca-N bonds in anions a and b (Ca-N(av) = 2.609(7) Å) are shorter than the Ca-N bonds in the eight-coordinate EDTA⁴⁻ complex (Ca-N = 2.623 (7), 2.711 (8) Å) and the octahedral NTA³⁻ (NTA³⁻ = nitrilotriacetate) complex (Ca-N = 2.629 (2) Å).⁴⁴ The Ca-N bonds in complex c (Ca-N = 2.575 (6), 2.567 (5) Å) are shorter than the Ca-N bonds in complexes a and b, as a result of the simultaneous involvement of O23 and O29 in unidentate(O) bridges. As a result of this bridging arrangement, the O23--O29 distance (3.190 (6) Å) in complex c is significantly shorter than the corresponding distances (O3...O9 = 3.279 (6), O13...O19 =3.298 (6) Å) in complexes a and b. Thus, binding of O23 and O29 to Ca6 appears to act to tighten the EGTA⁴⁻ ligand about Ca3.

The two aminodiacetate termini bind to Ca²⁺ very differently. At one end of the EGTA⁴⁻ ligand in anion a, Ca1 is approximately coplanar with the coordinating atoms N1, O1, and O3. In contrast, Ca1 does not lie near the plane formed by N2, O7, and O9 at the other end of the ligand. These meridional (N1, O1, O3) and bent (N2, O7, O9) arrangements of the termini persist in all three of the crystallographically independent complex anions in 1.

The conformations of the five-membered chelate rings in all three of the [Ca(EGTA)]²⁻ anions have been analyzed by the method used to assess conformations in steroid ring systems49 and in other polyamino-polycarboxylate complexes.⁵⁰ The values of the asymmetry parameters for the glycinate chelate rings, the amino ether chelate rings, and the diether chelate rings are all similar to values reported for other aminocarboxylate complexes.

Structure of Sr[Cd(EGTA)]·7H₂O (2). The structure of the $[Cd(EGTA)]^{2-}$ anion in 2 is similar to that of the $[Ca(EGTA)]^{2-}$ anions of 1, as can be seen by comparison of Figure 1 (parts c and a). The EGTA⁴⁻ ligand is octadentate in coordinating to Cd(II), despite cadmium's slightly smaller ionic radius (for eight-coordinate metal ions, $r_{Ca(II)} = 1.12$ Å, $r_{Cd(II)} = 1.10$ Å).⁵¹ The coordination geometry about Cd²⁺ remains approximately dodecahedral.

Five of the nine oxygen atoms surrounding the Sr^{2+} counterion come from bridging carboxylate groups, and the remaining four come from water molecules. Two of the four carboxylate groups of the [Cd(EGTA)]²⁻ anion are involved in bridging interactions. One carboxylate group (O9/O10) functions simultaneously as a bidentate and a unidentate(O') donor to two symmetry-related Sr^{2+} ions (see Figure 2b). The other bridging carboxylate group (O7/O8) acts solely as a unidentate(O') donor. The nine ligand atoms about Sr²⁺ occupy the vertices of a slightly twisted tricapped trigonal prism, with triangular faces composed of O10, O8a, and O10a as well as w3, w1, and w4. The prism is capped by atoms O9, w2, and O7a.

The bridging bond lengths to Sr^{2+} span a large range of values (2.559 (3)-2.995 (3) Å). The Sr-G7a distance (2.995 (3) Å) is more than 0.2 Å greater than any other Sr-O(carboxylate) distance in 2 and must represent an extremely weak interaction. Despite the fact that O10 is involved in both a bidentate and a unidentate(O') bridge, the unidentate(O') bridge exhibits the shortest Sr-O(carboxylate) distance (Sr-O10a = 2.559 (3) Å). In the bidentate bridges, the oxygen atom that is simultaneously bound to Cd^{2+} exhibits a longer bond to Sr^{2+} (Sr-O7a = 2.995 (3), Sr-O8a = 2.614 (3), Sr-O9 = 2.764 (3), Sr-O10 = 2.696(3) Å). The average Sr-O(carboxylate) distance in Mg[Sr- $(EGTA)(OH_2)$]-7H₂O⁵² is 2.67 (6) Å, with a range of 2.588 (4)-2.722 (5) Å. This range agrees well with the range of Sr-O(carboxylate) distances for 2, with the exception of the very long bond to O7a. Three of the $Sr-OH_2$ distances in 2 are equal within experimental error $(Sr-OH_2(av) = 2.559 (7) \text{ Å})$, while one is significantly longer (Sr-w2 = 2.734 (3) Å).

Like 1, 2 is held together in the solid state by carboxylate bridges between metal ions and by hydrogen bonds. Three occluded water molecules participate in hydrogen bonding with carboxylate groups and coordinated water molecules to connect the polymeric cation/anion chains.

In the [Cd(EGTA)]²⁻ anion, one Cd-O(carboxylate) bond length (Cd-O7 = 2.420 (3) Å) is longer than the other three (Cd-O1 = 2.324 (3), Cd-O3 = 2.347 (3), Cd-O9 = 2.325 (3)Å). The O3...O7 distance (3.101 (6) Å) is 0.19 Å shorter than the corresponding distances in the relatively unconstrained a and b chelates in 1 (O3...O7(av) = 3.29 (1) Å). O3 and O9 also approach each other more closely in 2 (by 0.18 Å) than in the a and b chelates in 1. If O7 were bound to cadmium(II) at a normal distance, it would force O3 and O7 into even closer proximity. These changes in intrachelate contact distances, together with the long Cd-O7 bond, suggest that the EGTA⁴ ligand fits less well about the slightly smaller Cd²⁺ ion than it does about the Ca2+ ion.

The Cd-O(carboxylate) distances in 2 (Cd-O(carb,av) = 2.35 (5) Å) are similar to those in the seven-coordinate [Cd- $(EDTA)(OH_2)]^{2-}$ anion $(Cd-O(carb,av) = 2.39 (5) Å)^{53}$ despite the difference in coordination number. They are also similar to the Ca-O(carboxylate) distances in the [Ca(EGTA)]²⁻ anions of 1 (Ca-O(carb,av) = 2.38 (2) Å).

Differences between 1 and 2 surface when metal-N and metal-O(ether) bond lengths are compared. The Cd-N distances (Cd-N(av) = 2.43 (1) Å) in 2 are much shorter than the Ca-N distances (Ca-N(av) = 2.609 (7) Å) in the a and b chelates in 1. The Cd-N distances in 2 are slightly longer than those in $[Cd(EDTA)(OH_2)]^{2-}(Cd-N = 2.382(9), 2.414(7) Å).^{53}$

In contrast, Cd-O(ether) bonds are longer than Ca-O(ether) distances (Cd-O(ether,av) = 2.580 (8), Ca-O(ether,av) = 2.50(4) Å in anions a and b of 1). For the seven-coordinate cadmium ion in [Cd(ODA)]·3H₂O (ODA = oxydiacetate),⁵⁴ Cd-O(ether) = 2.49(1) Å; for six- and seven-coordinate cadmium ions in $Cd_2(TGM)Cl_4^{55}$ (TGM = tetraethylene glycol dimethyl ether), the Cd-O(ether) distances for ether oxygen atoms not involved in bridging ranged from 2.41 (1)-2.52 (1) Å (Cd-O(av) = 2.46) (5) Å). The differences between the Cd–O bond lengths in 2 and these literature values are expected, given the differences in coordination numbers.51

Values of the bond angles about the Ca^{2+} and Cd^{2+} ions differ significantly (see Tables IV and VII). In amino ether rings, O-Ca-N < O-Cd-N, Ca-O-C' > Cd-O-C', and Cd-N-C > Cd-O-C'Ca-N-C. These differences are as expected, given that the shortening of the Cd-N bonds (compared to Ca-N) is of greater magnitude than the lengthening of the Cd-O(ether) bonds

⁽⁴⁵⁾ Bryson, A.; Nancollas, G. H. Chem. Ind. 1965, 645.
(46) Mirti, P.; Gennaro, M. C. J. Inorg. Nucl. Chem. 1981, 43, 3221.
(47) Mirti, P. J. Inorg. Nucl. Chem. 1979, 41, 323.
(48) Metz, P. B.; Moras, D.; Weiss, R. Acta Crystallogr., Sect. B: Struct.

⁽⁴⁹⁾ Moz, Cryst. Chem. 1973, B29, 1377.
(49) Duax, W. L.; Norton, D. A. Atlas of Steroid Structure; Vol 1, IFI/Plenum: New York, 1975; p 17.

⁽⁵⁰⁾ Stezowski, J. J.; Hoard, J. L. Isr. J. Chem. 1984, 24, 323.

⁽⁵¹⁾ Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, A32, 751.

⁽⁵²⁾ Schauer, C. K.; Anderson, O. P., unpublished results. (53) Solans, X.; Gali, S.; Font-Altaba, M.; Oliva, J.; Herrera, J. Acta Crystallogr., Sect. B: Struct. Sci. 1983, B39, 438. (54) Boman, C.-E. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst.

Chem. 1977, B33, 838.

⁽⁵⁵⁾ Iwamoto, R.; Wakano, H. J. Am. Chem. Soc. 1976, 98, 3764.

(compared to Ca-O(ether)). The shorter Cd-N bonds also dictate the angular differences seen in the glycinate rings: Ca-O-C' > C'Cd-O-C', Ca-N-C' > Cd-N-C', and N-Cd-O > N-Ca-O.

¹H NMR Spectra. The ¹H NMR spectra of EGTA⁴⁻ and several of its metal complexes have been described previously.45-47 Splitting patterns in ¹H NMR spectra can allow qualitative judgments about bond labilities for a chelate in solution,⁵⁶⁻⁵⁸ but such analyses require that frequency differences between theoretically inequivalent protons be sufficiently large to observe predicted splitting patterns.³⁶ This requirement made interpretation of the 60-MHz room temperature NMR spectrum of [Ca(EGTA)]²⁻ difficult.⁴⁶ At 200 MHz, [Ca(EGTA)]²⁻ exhibits an AB quartet for the acetate protons, a singlet for the protons of the diether ring, and two broadened triplets for the protons of the amino ether rings (see Experimental Section). A similar splitting pattern is seen for [Cd(EGTA)]^{2-,36} but in that case the AB pattern is further split by the presence of ¹¹¹Cd (12.75%, I $= \frac{1}{2}$ and $\frac{113}{2}$ Cd (12.26%, $I = \frac{1}{2}$).

The AB and ABX patterns for the acetate protons of the Ca²⁺ and Cd²⁺ complexes imply that inversion at nitrogen is not occurring on the NMR time scale at room temperature for either of the complexes. This, in turn, implies that the Ca-N and Cd-N bonds are not labile, since such lability (with rapid inversion) would result in exchange of the diastereotopic A and B protons. The single AB quartet for the acetate protons implies that a rapid (on the NMR time scale) bond dissociation and rearrangement process results in higher average symmetry (C_{2v}) for the complexes in solution than that observed in the solid state (C_1) . This must be accomplished by breaking of metal-O(carboxylate) bonds, allowing interconversion between centrosymmetrically related complex anions.

The acetate AB pattern for [Ca(EGTA)]²⁻ coalesces to a singlet as the temperature is raised. This implies that Ca-N bond breaking, which allows inversion at nitrogen to occur, becomes rapid on the NMR time scale at elevated temperature. Given the large difference in M-N bond distances for the Ca²⁺ and Cd²⁺ complexes, a difference in the activation parameters for nitrogen atom dissociation would be expected. The failure of the ABX pattern for [Cd(EGTA)]²⁻ to coalesce completely, even when the solution is heated in a sealed tube to 120 °C, is consistent with this expectation.

¹¹³Cd Solution and Solid-State NMR Spectra. Cd²⁺ has been used extensively in biological systems as an NMR spectroscopic replacement for Ca²⁺, Mg²⁺, and Zn²⁺ ions.^{23,24} ¹¹³Cd is a sensitive, relatively abundant nucleus with a large chemical shift range (≈900 ppm). The ¹¹³Cd NMR spectra of cadmium-substituted calcium-binding proteins exhibit a chemical shift range of -85 to -130 ppm (relative to 0.1 M Cd(ClO₄)₂(aqueous)). The only Cd²⁺ complex that exhibits a solution chemical shift value that highly shielded involves a macrocyclic ligand containing six ether oxygen atoms and four pendant carboxylate groups; the ¹¹³Cd resonance for that complex occurs at -130 ppm.⁵¹

In solution, partial substitution by solvent results in a ¹¹³Cd chemical shift value that is the average for all of the variously substituted complexes; this makes it difficult for a complex in solution to exhibit a chemical shift value in the calcium-binding protein range, since the proteins are not subject to such effects. As a result, solid-state ¹¹³Cd NMR spectra, even of species such as Cd(NO₃)₂·4H₂O and Cd(OAc)₂·2H₂O,⁶⁰⁻⁶² are more likely to exhibit resonances in the calcium-binding protein chemical shift range. Recently, single-crystal ¹¹³Cd NMR studies^{63,64} have been

Figure 3. (a) Magic angle spinning ¹¹³Cd spectrum of a powder ground from crystals of Sr[Cd(EGTA)].7H2O. The spinning sidebands are modulated at the rotor speed. $\delta(^{113}Cd) = +36$ ppm. (b) Nonspinning powder pattern for 2. The principal components of the shielding tensor are $\sigma_{11} = 159$, $\sigma_{22} = 29$, $\sigma_{33} = -81$ ppm.

used to identify the interactions that determine the components of the shielding tensor. In the compounds studied thus far, the most highly shielded components of the tensor are oriented perpendicular to long Cd-O bonds.

While the present work was in progress, the ¹¹³Cd NMR spectrum of [Cd(EGTA)]²⁻ in solution was reported.⁶⁵ In solution, the ¹¹³Cd resonance for [Cd(EGTA)]²⁻ is 15 ppm deshielded from the 0.1 M Cd(ClO₄)₂ standard. The Cd²⁺-EDTA complex exhibits a ¹¹³Cd chemical shift of +85 ppm⁶⁶ relative to the same standard; the more shielded Cd²⁺-EGTA resonance, relative to that for the Cd²⁺-EDTA complex, apparently results from replacement of a single water molecule by two ether oxygen atoms. The presence of the nitrogen atoms (known to shift ¹¹³Cd resonances toward a less shielded position) in 2 means that the [Cd(EGTA)]²⁻ complex cannot be expected to reproduce the ¹¹³Cd chemical shifts characteristic of cadmium-substituted calciumbinding proteins, despite the presence of six oxygen atoms in the metal's primary coordination sphere.

The 113 Cd spectra obtained from powdered 2 are shown in Figure 3, parts a (magic angle spinning) and b (nonspinning). These spectra yield a ¹¹³Cd chemical shift value (+36 ppm) that is free of the influence of the ligand substitution processes that affect the solution value. The metal-ligand bond-breaking processes which occur in solution (see above) must temporarily replace carboxylate oxygen atoms by water molecules; this was expected to result in a more deshielded chemical shift value for the ¹¹³Cd resonance in solution, compared to that for the complex in the solid state. Surprisingly, the solid-state resonance occurs at a less highly shielded position (by 21 ppm) than does the solution resonance. The chemical shift sensitivity of ¹¹³Cd is such that changes in the ligand binding induced by the bridging interactions to Sr^{2+} counterions may cause this unexpected chemical shift behavior.

The nonspinning pattern for 2 is consistent with its low symmetry. Three distinct elements of the shielding tensor are observed $(\sigma_{11} = 159, \sigma_{22} = 29, \sigma_{33} = -81 \text{ ppm})$; the chemical shift anisotropy spans 240 ppm. Only the value of the most highly shielded component lies in the range of chemical shifts exhibited by cadmium-substituted calcium-binding proteins. This component of the shielding tensor is probably roughly perpendicular to the long Cd-O(ether) bonds.

⁽⁵⁶⁾ Day, R. J.; Reilley, C. N. Anal. Chem. 1964, 36, 1073.
(57) Day, R. J.; Reilley, C. N. Anal. Chem. 1965, 37, 1326.
(58) Gennaro, M. C.; Mirti, P.; Casaline, C. Polyhedron 1983, 1, 13. (59) Keller, A. D.; Drakenberg, T.; Briggs, R. W.; Armitage, I. M. Inorg. Chem. 1985, 24, 1170.

⁽⁶⁰⁾ Murphy, P. D.; Gerstein, B. C. J. Am. Chem. Soc. 1981, 103, 3282. (61) Cheung, T. T. P.; Worthington, L. E.; DuBois Murphy, P.; Gerstein,
 B. C. J. Magn. Reson. 1980, 41, 158.

⁽⁶²⁾ Mennitt, P. G.; Shatlock, M. P.; Bartuska, V. J.; Maciel, G. E. J. Phys. Chem. 1981, 85, 2087.

⁽⁶³⁾ Honkonen, R. S.; Doty, R. D.; Ellis, P. D. J. Am. Chem. Soc. 1983, 105. 4163.

⁽⁶⁴⁾ Honkonen, R. S.; Ellis, P. D. J. Am. Chem. Soc. 1984, 106, 5488. (65) Live, D.; Armitage, I. M.; Dalgarno, D. C.; Cowburn, D. J. Am. Chem. Soc. 1985, 107, 1775.

⁽⁶⁶⁾ Jensen, C. F.; Deshmukh, S.; Jakobsen, H. J.; Inners, R. R.; Ellis, P. D. J. Am. Chem. Soc. 1981, 103, 3659.

Implications for Ca²⁺-Binding Proteins. Since Cd-O(carboxylate) distances proved to be very similar to Ca-O(carboxylate) distances in the EGTA⁴⁻ complexes and coordination numbers in the two complexes were identical, one infers that the Cd²⁺ ion is a good choice as a spectroscopic probe for calcium-binding site structure. However, it should be noted that calcium-selective proteins utilize neutral oxygen donors (carbonyl oxygen atoms and hydroxyl groups) as well as anionic carboxylate donors to bind Ca²⁺. Substitution of Cd²⁺ for Ca²⁺ at a protein metal-binding site results, as noted above, in observation of a highly shielded 113 Cd resonance. Since the Cd²⁺ ion has shown a distinctly lower affinity for neutral oxygen donors than Ca²⁺ in the present study, and since long Cd-O distances are thought to be associated with highly shielded chemical shift values from single-crystal NMR studies, the low affinity of Cd²⁺ for neutral oxygen donors, rather than intrinsic site structure, may be responsible for the highly shielded chemical shift values characteristic of the cadmiumsubstituted proteins.

Acknowledgment. The Nicolet R3m/E X-ray diffractometer and computing system at Colorado State University was purchased with funds provided by the National Science Foundation. Solid-state ¹¹³Cd NMR spectra were recorded in the Colorado State University Regional NMR Center, funded by the National Science Foundation. We thank Dr. Bruce Hawkins for obtaining the ¹¹³Cd solid-state NMR spectra.

Supplementary Material Available: Table S-I—chelate ring conformational parameters for 1, Table S-II—inter-ring torsion angles for 1, Table S-III—anisotropic thermal parameters for 1, Table S-IV—calculated hydrogen atom coordinates for 1, Table S-VI—chelate ring conformational parameters for 2, Table VII—inter-ring torsion angles for 2, Table S-VIII—anisotropic thermal parameters for 2, Table S-IX—calculated hydrogen atom coordinates for 2, Table S-IX—calculated hydrogen atom coordinates for 2, Table S-XII—selected least-squares planes for 1, Table S-XII—hydrogen bonding distances in 1, Table S-XIII—selected least-squares planes for 2, Table S-XIV—hydrogen bonding distances in 2, Figure S-1—view of the unit cell of 1, and Figure S-2—view of the unit cell of 2 (26 pages); Tables S-V and S-X—observed and calculated structure factors, ×10, for 1 and 2, respectively (86 pages). Ordering information is given on any current masthead page.

Crystal and Molecular Structure of the Charge-Transfer Salt of Decamethylcobaltocene and Tetracyanoethylene (2:1): $\{[Co(C_5Me_5)_2]^+\}_2[(NC)_2CC(CN)_2]^{2-}$. The Electronic Structures and Spectra of $[TCNE]^n$ (n = 0, 1-, 2-)

David A. Dixon* and Joel S. Miller*

Contribution No. 4175 from the Central Research and Development Department, E. I. du Pont de Nemours & Co., Experimental Station E328, Wilmington, Delaware 19898. Received August 15, 1986

Abstract: The reaction of decamethylcobaltocene, $Co(C_3Me_5)_2$, and tetracyanoethylene, TCNE, leads to the isolation of two phases of 1:1 and 2:1 composition. The crystal and molecular structure of the 2:1 substance has been determined by single-crystal X-ray analysis at -50 °C. The red-orange 2:1 complex crystallizes as the acetonitrile solvate in the triclinic PI space group (No. 2) $[a = 10.579 (6) \text{ Å}, b = 14.142 (7) \text{ Å}, c = 15.939 (5) \text{ Å}, \alpha = 114.73 (3)^\circ, \beta = 94.40 (4)^\circ, \gamma = 91.48 (4)^\circ, V = 2155 (4)^\circ, V = 2155 (4)^\circ, \gamma = 91.48 (4)^\circ$ (4) Å³, and Z = 2]. The unit cell is comprised of two independent $[Co(C_5Me_5)_2]^+$ cations, an anion, and a MeCN solvent molecule. The final weighted R_w was 0.083. The C_5 Co¹¹¹ cation is ordered and is essentially structurally equivalent to the isoelectronic Fe¹¹(C₅Me₅)₂; however, the average C-C and Co¹¹¹-C₅ ring distances are ~0.04 Å shorter than the analogous distances observed for $[Fe^{111}(C_5Me_5)_2]^+$. The diamon structure possesses approximate D_{2d} local symmetry with C-C and average C—CN and C≡N distances of 1.49 (2), 1.392 (8), and 1.166 (3) Å, respectively. The [C(CN)2]⁻ groups have an 87.1 \pm 0.3° dihedral angle. For the [TCNE]ⁿ series for n = 0 the C-CN distance is greater than the C-C distance; for n = 2- the converse is true, and for n = 1- the distances are comparable. The [TCNE]ⁿ (n = 0, 1-, 2-) moieties have been characterized by infrared, Raman, and UV-vis spectroscopic techniques. The electronic absorption spectra of [TCNE] - exhibits a band ($\lambda_{max} \approx 23.375 \text{ cm}^{-1}$; $\epsilon \sim 8425 \text{ M}^{-1} \text{ cm}^{-1}$) with a progression of 17 vibrational transitions (~550 cm⁻¹) tentatively assigned to coupling of the excited-state C-CN bend to the Π - Π * transition. TCNE exhibits a $\Pi \rightarrow \Pi$ * transition at 38 300 cm⁻¹ with four vibrational overtones (~1200 cm⁻¹) tentatively assigned to coupling to the ν (C=C) vibration. The electronic structures of $[TCNE]^n$ (n = 0, 1, 2-) have been calculated by ab initio molecular orbital theory with the STO-3G basis set and additionally for n = 0 and 2- with a double-5 basis set augmented by a set of d polarization functions at the ethylene sp^2 carbons. The latter method gives results that are in good agreement with those obtained with ab initio STO-3G basis sets. The geometries were determined with both basis sets. The force fields were determined with both basis sets, and the frequencies are compared to the experimental values. These results confirm the D_{2h} and D_{2d} structures of [TCNE]⁺ and [TCNE]²⁻, respectively. Charge and spin distributions are presented and are discussed in terms of classical resonance structures.

Since our observation of molecular metamagnetism^{1,2} and ferromagnetism^{2,3} for the 1:1 TCNQ and TCNE (TCNQ = 7,7,8,8-tetracyano-*p*-quinodimethane; TCNE = tetracyano-ethylene) salts of decamethylferrocene, respectively, we have sought to understand the structure-function relationship of me-

tallocenium salts of strong acceptor anions with the particular focus on understanding the microscopic basis for cooperative magnetic phenomena in molecular materials. With our recent discovery of the means to stabilize dianionic acceptors⁴ enabling their structural and spectroscopic characterization, we have prepared $\{[Co(C_5Me_5)_2]^+\}_2[TCNE]^{2-}$ and studied its physical properties. We are particularly interested in this compound as it allows comparison with other percyano anions and also provides a closed-shell model compound with which to compare other cyano

⁽¹⁾ Candela, G. A.; Swartzendruber, L. J.; Miller, J. S.; Rice, M. J. J. Am. Chem. Soc. 1979, 101, 2755.

⁽²⁾ Miller, J. S.; Epstein, A. J.; Reiff, W. M. Isr. J. Chem., in press.
(3) (a) Miller, J. S.; Calabrese, J. C.; Epstein, A. J.; Bigelow, R. W.;
Zhang, J. H.; Reiff, W. M. J. Chem. Soc., Chem. Commun. 1986, 1026. (b)
Miller, J. S.; Calabrese, J. C.; Chittapeddi, S. R.; Zhang, J. H.; Reiff, W. H.;
Epstein, A. J. J. Am. Chem. Soc. 1987, 109, 769.

⁽⁴⁾ Miller, J. S.; Dixon, D. A. Science (Washington, D.C.) 1987, 235, 871.